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IMPACT OF SPHERICAL SHELLS AGAINST THE SURFACE OF A LIQUID

A. G. Gorshkov, E. I. Grigolyuk

(Moscow)

ABSTRACT. Problems involving the impact of flat
and elastic bodies against a liquid began to be intensely
investigated as far back as the 1930's in connection with
designs of hydroplanes during landing and ship impact against
waves [1-3]. During an impact of a body against a liquid,
the values and the character of the distribution of the
hydrodynamic load on the surface of the body are influenced
by many factors. It is difficult to take all of these
factors into consideration in view of the nonlinearity of
the boundary conditions on the free surface, the presence
" of current filaments, and splashes leading to discontinuous
solutions. o

At the present time, the water impact of rigid bodies
has been investigated in greatest detail. Problems in which
the hydroelastic interaction between a body and a liquid was
_taken into account have been investigated drawing upon the
concepts introduced in the 1930's by Wagner essentially for
flat-keeled bodies [3-5]. A detailed bibliography of the
problem of impact of bodies against a liquid is given in
the survey [6].

An analysis is made here of the vertical impact of a
thin, mildly sloping spherical shell against the surface of-
an ideally incompressible liquid. The contour of the shell
leans against an elastic rib which is attached to a rigid body

of mass MO' The mass of the rigid body, Mo, exceeds many times

the mass of the shell, m,. It is assumed that the initial
impact velocity VO is small compared to the velocity of sound

¢ in the liquid.
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1. Below we shall limit ourselves to a discussion of only axially sym-
metric deformations of the shell. Then, for certain ratios of the parameters
of the shell and the support rib [7], the equation of motion of the shell in

terms of the normal bending v, and the boundary conditions can be written in

a particularly simple form

Fw Aav., o
7 AV*V*w 4 BVw v'\:7w+ . + p - 1

we= Viws=0 for g=1

Here

"""""" w=w,/h, k=nh/R, v=ct/R, y=E[pe p*=p[pc*
A=vE[120)(1—~"), B=Nwh/ER*, D=1/n¥, n=p,/p

V=uv/c, @=R¢/R, a=r[R, V*=6/[0a+1/ad[da

where h, R are the thickness and the radius of curvature of the shell; va,gg

are the Poisson ratio, elasticity modulus, and density of shell material,

respectively; p, ¢ are the density of the liquid and the velocity of sound in

its RO is the radius of the support rib; t is the time; r is the radius vector

of the cylindrical coordinate system; p is the hydrodynamic pressure; v is

the shell motion velocity as a rigid body; N0 is the constant initial stress
in the shell,

In the derivation of Equation (1), we have not taken into account the
forces of inertia in the middle surface of the shell and the projection qf
the inertial force due to the motion of the shell as a rigid body on the tan-
gent to the shell contour. A positive bending value is in the direction of

the inner normal. Initially w=0w/dr==0 for T=0.

2. To determine the hydrodynamic loads in the initial stage of the
interaction of the shell with the liquid, we shall use the same concepts

that Wagner used for the wedge in the two-dimensional case [1l]. For small




.depths of immersion, the flow around the body of revolution will be analogous
to the flow in front of an equivalent disk of radius b(t) which moves forward

in translational motion.

Then the velocity potential for a perturbed motion of the liquid, <P=
=@, + ¢.» (assuming it exists) may be represented in the form (I»‘«OE“are the

elliptical coordinates)

o= —?i bu(i - § arc ctg {;), N =‘Z'B,‘Pzn+:(u) Qzn+4 (iE)
. Lo i
B,=— ['—"an-u( E)]z=o fH%PZnH(U)dP 2)

Here :Pz,.H(g),» 'Qh_;_,(ig) are Legendre polynomials of first and second kind;
P«=0_ corresponds to a free surface of liquid; £E==0 corresponds to the surface
of the disk.

The potential ¢.' corresponds to a translational motion of the disk with
velocity v, and the potential P2:i5 due to the presence of an additional

velocity field dw/dt, which is caused by a deformation of the shell [8,9].

After conversion to dimensionless coordinates, we obtain the following

on the basis of the Cauchy~-Lagrange relation

2 [——-————— Ve +fpo1’i3’—a ig—]‘“

(PouVﬁz“"“ .
*l = —'2—5;'27';{ [Pzn-u(u) -} %P:n+i(u)] X
X Ja-—d;f’én;;@)da '+‘ aPzn;s(lL) ja%PmM(u)da} , (3)

where
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The function z(r) has in this case been introduced formally by analogy
with the impact of rigid bodies, and no longer has universal meaning as it
did in the case of impact of rigid bodies (u(t) must be found during the

solution).

In deriving Equations (3), we have neglected certain terms in the Cauchy-
Lagrange integral, the terms being proportional to the square of the total
velocity of motion of the liquid. The role of these terms increases with an

increase in the depth of immersion.

The greatest difficulty in this approach consists in determining the
radius of the wetted surface, b(t). It can be found from the corresponding
integral equation as in the case of a vertical impact of a flat-keeled

elastic body [5].

Here, to simplify the problem, to determine b(t) we shall consider the
vertical impact of an equivalent mechanical system consisting of two rigid
bodies of masses M0 and o connected by an elastic spring. Contact with the

liquid is made by the body m. whose mass and the form of the impact surface

0
correspond to the mass and form of the rigid shell. The motion of the system

will be described by the following equations [3]:
L4 . S . e o o . i (4)
z" + on(z, — 1) — 0 =0, (14+m)z,” +mz" —o(z—z) —0=0

and

zy=y, /R, z.=y./R, =R/ c*m,

O=gR [, m=4pb®[3m,, ~ n=.m,[M,




Here vy is the displacement of the body MO; Yy is the displacement of
the body mys Wy is the stiffness of the spring; g is the acceleration of

gravity.

The stiffness of the spring, Wos mAY be determined experimentally
or theoretically.

In this case, the function u=uz,"/a" is defined by the expression [10]

14a* 14+a 1 -~
- 4a? lnl—a' 2¢ (5

To system (4) we must add the initial conditions

$1=x;=0, 2 =z, =V, for t1=0 (6)

System (4) with (5) and (6) was integrated numerically using the Runge-'
Rutta method (the stiffness Wy was determined in terms of the frequency of
the first oscillatory mode of the shell). By solving this system, we deter-—
mined the functions &(%), u(r),_V(r) and V'(t) . The data thus obtained were

used subsequently to solve Equation (1).

3. For the particular case discussed here, it is convenient to represent

the displacement of the shell, w(g, 1), in the form

w= Y0t -
i

where h(&&fis the zero-order Bessel function,.and &+ are the roots of the

equation Jo(%) =0.,

Expanding the external load into a series in the corresponding Bessel
functioné, after using the I. G. Bubnov procedure [1l] we shall obtain a

system of ordinary differential equations in the generalized coordinates,




-
- ©:(1), which was integrated numerically by the Runge-Kutta method with the

following values of the characteristic parameters of the shell and the medium:

J= 00255, o= 042, y =391, n==0428, V,=666.10~%, v=03, x=007.

Calculations were done for 1 = 1 - 7, n = 0 - 4,

The figure shows the variation

W,
A R ,
Vi v
ﬁé 5 \ ' of the total bending w (curve 1) and
0.25 1\\ 0.5 the velocity (curve 2) at the center
AR t
| /\ \ of the panel. 1In the same figure,
, .
1Y z J/\, akd curve 3 characterizes the variation
-0.25 k\ with time of the velocity of the
\4 — entire system as a rigid body, V, and
curve 4 corresponds to V'.

The greatest contribution to the total bending is made by the first four

terms of the series.
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